Update propagation through security views

Stawek Staworko, lovka Boneva, Benoit Groz

Université Lille 1, Mostrare project, INRIA

March 22, 2010

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views March 22, 2010 1/16

Outline

@ Updates and (security) Views

© View Inversion

© Update Propagation

(Université Lille 1, Mostrare project, INRIA)! Update propagation through security views

Views and Updates

Database views:

o facilitate access to data

@ remove irrelevant data

@ restructure the presentation of the data
Database security views:

@ hide sensitive data

View update propagation
e document t, view V = A(t),

@ view update by the user: V — V/

o find a propagation: t Y

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views

March 22, 2010

3/16

The update propagation problem

?
tmmmmmmmmmos >t
A A
D, = A(Ds): V—m—— Vv

view update

Find an update t — t’ (a propagation of V — V') such that:
o t— t'is side-effect free: A(t') = V'

e t > t'is schema compliant. t' |= D;

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views March 22, 2010

4/16

The update propagation problem

t------ e
A A
D, = A(Ds): V—m—— Vv

view update

Find an update t — t’ (a propagation of V — V') such that:
o t— t'is side-effect free: A(t') = V'
e t > t'is schema compliant. t' |= D;
e t > t’' has constant complement [Bancilhon, Spyratos'81] : no
modification of the hidden parts

March 22, 2010

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views

4/16

The update propagation problem

?
tmmmmmmmmmos >t
A A
D, = A(Ds): V—m—— Vv

view update

Find an update t — t’ (a propagation of V — V') such that:
o t— t'is side-effect free: A(t') = V'
e t > t'is schema compliant. t' |= D;
e t— t' is optimal- minimal modification of the hidden parts.

March 22, 2010

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views

4/16

Our framework

@ XML documents: unranked, ordered trees, with node identifiers.
@ Schema: DTD
e View given by an annotation[Farkas et al '02, Fan et al'04.]

» A(a,b) = 0 = the nodes labeled b under a node a are not visible
» A(a,b) =1 = the nodes labeled b under a visible node a are visible

Upward closed visibility of nodes: the descendants of a hidden node
are hidden as well (regardless of their annotation)

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views March 22, 2010 5/ 16

Our framework

@ XML documents: unranked, ordered trees, with node identifiers.
@ Schema: DTD

@ View given by an annotation

document t /

doc
A(projects, stable) =A(projects, dev) =A(stable,src) =...=1

A(dev, src) =A(stable, bin) =0

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views March 22, 2010 5/ 16

Our framework

@ XML documents: unranked, ordered trees, with node identifiers.
@ Schema: DTD

@ View given by an annotation

document t /

doc
A(projects, stable) =A(projects, dev) =A(stable,src) =...=1

A(dev, src) =A(stable, bin) =0

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views March 22, 2010 5/ 16

Our framework

@ XML documents: unranked, ordered trees, with node identifiers.
@ Schema: DTD

@ View given by an annotation

and updates ?)

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views March 22, 2010 5/ 16

Editing scripts

Update
* Deletion is recursive:

Input tree with nodes labelled:
delete whole subtrees

@ Del: nodes to be deleted i
* Insertion of a subtree, not

@ Ins: nodes to be inserted .
of internal nodes

March 22, 2010 6 /16

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views

Editing scripts

Update
* Deletion is recursive:

Input tree with nodes labelled:
delete whole subtrees

@ Del: nodes to be deleted i
* Insertion of a subtree, not

@ Ins: nodes to be inserted .
of internal nodes

March 22, 2010 6 /16

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views

Editing scripts

Update
* Deletion is recursive:

Input tree with nodes labelled:
delete whole subtrees

@ Del: nodes to be deleted i
* Insertion of a subtree, not

@ Ins: nodes to be inserted .
of internal nodes

no

///rm\()d

Del(a)n1 Del(d)n2 a p,Ins(d) Ins(a ng na
/ N\ / N\
De/(c)n5 Ins(c)n9 Ins(c)n10 € e Ins(c)n11

March 22, 2010

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views

6/16

Editing scripts

Update
* Deletion is recursive;

Input tree with nodes labelled:
delete whole subtrees

@ Del: nodes to be deleted i
* Insertion of a subtree, not

@ Ins: nodes to be inserted .
of internal nodes
Del(a), Del(d \ d
o /\ AN
Del(c) c c
Ny ng nio ne ni
— captures XQuery Update snapshot semantics)

March 22, 2010 6 /16

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views

Our framework

@ XML documents: unranked, ordered trees, with node identifiers.
@ Schema: DTD
@ View given by an annotation.

@ Updates are given as editing scripts: the alignment of the input and
output document on their common nodes.

Nice properties:

@ One can compute a DTD D, that captures the set of all view
documents. Hence the user will only apply view updates that have a
propagation

@ The constraints are local in a DTD: the modification of a node affects
only its siblings and their descendants.

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views March 22, 2010 7 /16

Identifiers, a choice of some consequence

Example
Schema: r — b%(ct +¢€)(a% - ct)*
Ins(c),72

V|ew update

/ " no\ / Ins Ins
Yns Ty m

Source tree //
Del(a}l Ins(a)n9 Ins(cr)2

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views March 22, 2010 8 /16

View Inversion

Propagation View update

Ins Ins

(Université Lille 1, Mostrare project, INRIA)! Update propagation through security views

Computing the view inverse

Example
i Schema and View:
d
/N d— ((a° + b°) - c1)*
€ c
ni3 nig

V.

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views March 22, 2010 10 / 16

Computing the view inverse

Example
i Schema and View:
d
/N d— ((a° + b°) - c1)*
€ c
ni3 nig

Example of construction

c G
<o ni3 ni4

(n1a, p1)

v

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views March 22, 2010 10 / 16

Computing the view inverse

Lemma

H,, captures all possible inversions for the sequence of children of the node

n as paths from an initial to a final state.

Example of construction

c G
<o ni3 ni4

(n1a, p1)

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views March 22, 2010

10 / 16

Computing the update propagation

(As for inverse), for every node n common to ts and Out(S,), construct a
graph G, representing the set of all possible sequences of children of n in
all Out(Ss) for all update propagation S;.

G,, has to handle insertion and deletion of nodes.

Example
The source DTD

1

the sequence of children of nin tg d
ny Nz N3 ng ns ne 1 0
a b

abdacd (W)

0
c

the edit script S,

ny n3 ng ni1 niz ne
Del(a) Del(d) Read(a) Ins(d) Ins(a) Read(d)

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views March 22, 2010 11 /16

Computing the update propagation

a b d a c' d
(o)) ny no n3 Ny ns nNe
Co n n3 Ny ni ni2 Ne
Del(a) Del(d) Read(a) Ins(d) Ins(a) Read(d)
d]l
1 0
@ £ a2
0

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views March 22, 2010 12 / 16

Computing the update propagation

Lemma

For each node n, the graph G, contains all possible update propagations
of Ss restricted to the sequence of children of n as paths from an initial to
a final node in the graph.

Theorem

The set of graphs G, for all node n common to ts and Out(S,) captures
all side-effect free and schema-compliant update propagations of S, .

As for inversion, the update propagation script Ss is computed bottom-up
on the structure of t. Inversion is used when inserting a subtree.

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views March 22, 2010 13 / 16

Computing an optimal update propagation

For all node n, construct a graph G, which contains only the optimal
update propagations from G,,. The construction is bottom-up.
@ Associate a cost to each edge in G,:

>

>

delete : the size of the deleted tree;

invisible insert : the size of the minimal tree with the corresponding
root label;

visible insert : the size of the minimal inversion tree;

invisible read : 0;

visible read : the sum of the costs of the optimal propagation graphs
for the children, computed recursively.

@ Remove from G, all non-optimal paths.

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views March 22, 2010 14 / 16

Complexity and remarks

@ The size of a minimal propagation may be exponential in size of Ds
(the minimal tree satisfying a DTD can have an exponential size).

r—an, aj—aj_1ai1, ag € J

o If for each label a, the tree to be inserted whenever a is (invisibly)
inserted is input of the problem, then the optimal propagation is of
polynomial size.

@ The model can be extended with some simple, local preferences for
choosing an optimal propagation (among all possible ones).

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views March 22, 2010 15 / 16

Future work

generalize views, schema ...

generalize updates

add constraints to the updates (node typing ...)

propagating update programs instead of editing script (V — V')

(Université Lille 1, Mostrare project, INRIA)| Update propagation through security views March 22, 2010 16 / 16

	Updates and (security) Views
	View Inversion
	Update Propagation

