Update propagation through security views

Sławek Staworko, Iovka Boneva, Benoît Groz

Université Lille 1, Mostrare project, INRIA

March 22, 2010

Outline

Updates and (security) Views

2 View Inversion

Update Propagation

Views and Updates

Database views:

- facilitate access to data
- remove irrelevant data
- restructure the presentation of the data

Database security views:

• hide sensitive data

View update propagation

- document t, view V = A(t),
- view update by the user: $V \mapsto V'$
- find a propagation: $t \stackrel{?}{\mapsto} t'$

The update propagation problem

Find an update $t \mapsto t'$ (a propagation of $V \mapsto V'$) such that:

- $t \mapsto t'$ is side-effect free: A(t') = V'
- $t \mapsto t'$ is schema compliant: $t' \models D$;

The update propagation problem

Find an update $t \mapsto t'$ (a propagation of $V \mapsto V'$) such that:

- $t \mapsto t'$ is side-effect free: A(t') = V'
- $t \mapsto t'$ is schema compliant: $t' \models D$;
- $t \mapsto t'$ has constant complement [Bancilhon, Spyratos'81] : no modification of the hidden parts

The update propagation problem

Find an update $t \mapsto t'$ (a propagation of $V \mapsto V'$) such that:

- $t \mapsto t'$ is side-effect free: A(t') = V'
- $t \mapsto t'$ is schema compliant: $t' \models D$;
- $t \mapsto t'$ is *optimal*: minimal modification of the hidden parts.

- XML documents: unranked, ordered trees, with node identifiers.
- Schema: DTD
- View given by an annotation[Farkas et al '02, Fan et al'04.]
 - $A(a,b)=0 \implies$ the nodes labeled b under a node a are not visible
 - $A(a,b)=\mathbb{1} \implies$ the nodes labeled b under a visible node a are visible

Upward closed visibility of nodes: the descendants of a hidden node are hidden as well (regardless of their annotation)

- XML documents: unranked, ordered trees, with node identifiers.
- Schema: DTD
- View given by an annotation

$$A(projects, stable) = A(projects, dev) = A(stable, src) = \dots = 1$$

 $A(dev, src) = A(stable, bin) = 0$

- XML documents: unranked, ordered trees, with node identifiers.
- Schema: DTD
- View given by an annotation

$$A(projects, stable) = A(projects, dev) = A(stable, src) = ... = 1$$

 $A(dev, src) = A(stable, bin) = 0$

- XML documents: unranked, ordered trees, with node identifiers.
- Schema: DTD
- View given by an annotation

and updates?

Update

Input tree with nodes labelled:

- Del: nodes to be deleted
- Ins: nodes to be inserted

- Deletion is recursive: delete whole subtrees
- * Insertion of a subtree, not of internal nodes

Update

Input tree with nodes labelled:

- Del: nodes to be deleted
- Ins: nodes to be inserted

- Deletion is recursive: delete whole subtrees
- * Insertion of a subtree, not of internal nodes

Update

Input tree with nodes labelled:

- Del: nodes to be deleted
- Ins: nodes to be inserted

- Deletion is recursive: delete whole subtrees
- * Insertion of a subtree, not of internal nodes

Update

Input tree with nodes labelled:

- Del: nodes to be deleted
- Ins: nodes to be inserted

- Deletion is recursive: delete whole subtrees
- * Insertion of a subtree, not of internal nodes

⇒ captures XQuery Update snapshot semantics

- XML documents: unranked, ordered trees, with node identifiers.
- Schema: DTD
- View given by an annotation.
- Updates are given as editing scripts: the alignment of the input and output document on their common nodes.

Nice properties:

- ullet One can compute a DTD D_{v} that captures the set of all view documents. Hence the user will only apply view updates that have a propagation
- The constraints are local in a DTD: the modification of a node affects only its siblings and their descendants.

Identifiers, a choice of some consequence

View Inversion

Computing the view inverse

Example

Schema and View:

$$d \to ((a^{\mathbb{O}} + b^{\mathbb{O}}) \cdot c^{\mathbb{1}})^*$$

Computing the view inverse

Example

Schema and View:

$$d \to ((a^{\mathbb{O}} + b^{\mathbb{O}}) \cdot c^{\mathbb{1}})^*$$

Example of construction

Computing the view inverse

Lemma

 H_n captures all possible inversions for the sequence of children of the node n as paths from an initial to a final state.

Example of construction

Computing the update propagation

(As for inverse), for every node n common to t_s and $Out(S_v)$, construct a graph G_n representing the set of all possible sequences of children of n in all $Out(S_s)$ for all update propagation S_s .

 G_n has to handle insertion and deletion of nodes.

Computing the update propagation

$$c_0 \xrightarrow{a} n_1 \xrightarrow{b^i} n_2 \xrightarrow{d} n_3 \xrightarrow{a} n_4 \xrightarrow{c^i} n_5 \xrightarrow{d} n_6$$

$$c_0 \xrightarrow{Del(a)} n_1 \xrightarrow{Del(d)} n_3 \xrightarrow{Read(a)} n_4 \xrightarrow{lns(d)} n_{11} \xrightarrow{lns(a)} n_{12} \xrightarrow{n_6} n_6$$

Computing the update propagation

Lemma

For each node n, the graph G_n contains all possible update propagations of S_s restricted to the sequence of children of n as paths from an initial to a final node in the graph.

Theorem

The set of graphs G_n for all node n common to t_s and $Out(S_v)$ captures all side-effect free and schema-compliant update propagations of S_v .

As for inversion, the update propagation script S_s is computed bottom-up on the structure of t. Inversion is used when inserting a subtree.

Computing an optimal update propagation

For all node n, construct a graph G_n^* which contains only the optimal update propagations from G_n . The construction is bottom-up.

- **①** Associate a cost to each edge in G_n :
 - delete: the size of the deleted tree;
 - invisible insert: the size of the minimal tree with the corresponding root label;
 - visible insert : the size of the minimal inversion tree;
 - invisible read : 0;
 - visible read : the sum of the costs of the optimal propagation graphs for the children, computed recursively.
- **2** Remove from G_n all non-optimal paths.

Complexity and remarks

• The size of a minimal propagation may be exponential in size of D_s (the minimal tree satisfying a DTD can have an exponential size).

$$r \to a_n$$
, $a_i \to a_{i-1}a_{i-1}$, $a_0 \to \epsilon$

- If for each label a, the tree to be inserted whenever a is (invisibly)
 inserted is input of the problem, then the optimal propagation is of
 polynomial size.
- The model can be extended with some simple, local preferences for choosing an optimal propagation (among all possible ones).

Future work

- □ generalize views, schema ...
- → add constraints to the updates (node typing ...)
- ightharpoonup propagating update programs instead of editing script $(V \mapsto V')$